[70240413 Statistical Machine Learning, Spring, 2015]

Naive Bayes and Logistic Regression

Jun Zhu

dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

March 31, 2015

Outline

Probabilistic methods for supervised learning

Naive Bayes classifier

- Logistic regression
- Exponential family distributions
- Generalized linear models

An Intuitive Example

Grasshoppers

[Courtesy of E. Keogh]

With more data ...

Suild a histogram, e.g., for "Antenna length"

Empirical distribution

Histogram (or empirical distribution)

Smooth with kernel density estimation (KDE):

Classification?

Classify another insect we find. Its antennae are 3 units long
 Is it more probable that the insect is a Grasshopper or a Katydid?

Classification Probability

[Courtesy of E. Keogh]

Classification Probability

P(Grasshopper | 7) = 3 / (3 + 9)= 0.250P(Katydid | 7)= 9 / (3 + 9)= 0.750

Classification Probability

P(Grasshopper | 5) = 6 / (6 + 6)= 0.500P(Katydid | 5)= 6 / (6 + 6)= 0.500

The simplest "category-feature" generative model:

- Category: "bird", "Mammal"
- Features: "has beak", "can fly" ...

• A mathematic model:

• Naive Bayes assumption: features X_1, \ldots, X_d are conditionally independent given the class label Y

A mathematic model:

Inference via Bayes rule:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$$

Bayes' decision rule:

$$y^* = \arg\max_{y \in \mathcal{Y}} p(y|\mathbf{x})$$

Bayes Error

Theorem: Bayes classifier is optimal!

How to learn model parameters?

• Assume *X* are *d* binary features, *Y* has 2 possible labels

• How many parameters to estimate?

- How to learn model parameters?
- A set of training data:
 - (1, 1, 0, 0; 1)
 - (1, 0, 0, 0; 1)
 - **(0, 1, 1, 0; ()()**
 - □ (0, 0, 1, 1; **0**)

Maximum likelihood estimation (N: # of training data)

$$p(\{\mathbf{x}_i, y_i | \pi, q\}) = \prod_{i=1}^N p(\mathbf{x}_i, y_i | \pi, q)$$

Maximum likelihood estimation (N: # of training data)

$$(\hat{\pi}, \hat{q}) = \arg\max_{\pi, q} p(\{\mathbf{x}_i, y_i\} | \pi, q)$$

$$(\hat{\pi}, \hat{q}) = \arg\max_{\pi, q} \log p(\{\mathbf{x}_i, y_i\} | \pi, q)$$

Results (count frequency! Exercise?):

$$\hat{\pi} = \frac{N_1}{N}$$
 $\hat{q}_{0j} = \frac{N_0^j}{N_0}$ $\hat{q}_{1j} = \frac{N_1^j}{N_1}$

 $N_k = \sum_{i=1}^N \mathbf{I}(y_i = k) : \text{ } \# \text{ of data in category } k$ $N_k^j = \sum_{i=1}^N \mathbf{I}(y_i = k, x_{ij} = 1) : \text{ } \# \text{ of data in category } k \text{ that has feature } j$

Data scarcity issue (zero-counts problem):

$$\hat{\pi} = \frac{N_1}{N}$$
 $\hat{q}_{0j} = \frac{N_0^j}{N_0}$ $\hat{q}_{1j} = \frac{N_1^j}{N_1}$

• How about if some features do not appear?

Laplace smoothing (Additive smoothing):

$$\hat{q}_{0j} = \frac{N_0^j + \alpha}{N_0 + 2\alpha}$$

$$\alpha > 0$$

$$\hat{q}_{1j} = \frac{N_1^j + \alpha}{N_1 + 2\alpha}$$

A Bayesian Treatment

Put a prior on the parameters

$$p_0(q_{0j}|\alpha_1, \alpha_2) = \text{Beta}(\alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} q_{0j}^{\alpha_1 - 1} (1 - q_{0j})^{\alpha_2 - 1}$$

A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

$$\hat{q} = \arg \max_{q} \log p(q | \{\mathbf{x}_i, y_i\})$$
$$= \arg \max_{q} \log p_0(q) + \log p(\{\mathbf{x}_i, y_i\} | q)$$

Results (Exercise?):

$$\hat{q}_{0j} = \frac{N_0^j + \alpha_1 - 1}{N_0 + \alpha_1 + \alpha_2 - 2}$$

$$\hat{q}_{1j} = \frac{N_1^j + \alpha_1 - 1}{N_1 + \alpha_1 + \alpha_2 - 2}$$

A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

$$\hat{q}_{0j} = \frac{N_0^j + \alpha_1 - 1}{N_0 + \alpha_1 + \alpha_2 - 2}$$

• If $\alpha_1 = \alpha_2 = 1$ (non-informative prior), no effect

• MLE is a special case of Bayesian estimate

 \bullet Increase α_1, α_2 , lead to heavier influence from prior

Bayesian Regression

Soal: learn a function from noisy observed data

• Linear $\mathcal{F}_{linear} = \{f: f = wx + b, w, b \in \mathbb{R}\}$ • Polynomial $\mathcal{F}_{polynomial} = \{f: f = \sum_{k} w_k x^k, w_k \in \mathbb{R}\}$ • ...

Bayesian Regression

Noisy observations

$$y = f(\mathbf{x}) + \epsilon$$
, where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$

• Gaussian likelihood function for linear regression $f(\mathbf{x}_i) = \mathbf{w}^\top \mathbf{x}_i$ $p(\mathbf{y}|X, \mathbf{w}) = \prod_{i=1}^n p(y_i | \mathbf{x}_i, \mathbf{w}) = \mathcal{N}(X^\top \mathbf{w}, \sigma_n^2 I)$

Gaussian prior (Conjugate)

$$\mathbf{w} \sim \mathcal{N}(0, \Sigma_d)$$

Inference with Bayes' rule
Posterior $p(\mathbf{w}|X, \mathbf{y}) = \mathcal{N}(\frac{1}{\sigma_n^2}A^{-1}X\mathbf{y}, A^{-1}), \text{ where } A = \sigma_n^{-2}XX^\top + \Sigma_d^{-1}$ Marginal likelihood
Prediction $p(\mathbf{y}|X) = \int p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})d\mathbf{w}$

$$p(f_*|\mathbf{x}_*, X, \mathbf{y}) = \int p(f_*|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|X, \mathbf{y}) d\mathbf{w} = \mathcal{N}\left(\frac{1}{\sigma_n^2} \mathbf{x}_*^\top A^{-1} X \mathbf{y}, \mathbf{x}_*^\top A^{-1} \mathbf{x}_*\right)$$

Extensions of NB

- We covered the case with binary features and binary class labels
- ♦ NB is applicable to the cases:
 - Discrete features + discrete class labels
 - Continuous features + discrete class labels
 - • •
- More dependency between features can be considered
 Tree augmented NB
 - ••••

Gaussian Naive Bayes (GNB)

 \bullet E.g.: character recognition: feature X_i is intensity at pixel i:

• The generative process is

$$Y \sim \text{Bernoulli}(\pi)$$

 $P(X_i | Y = y) = \mathcal{N}(\mu_{iy}, \sigma_{iy}^2)$

Different mean and variance for each class k and each feature i

Sometimes assume variance is:
independent of Y (i.e., σ_i)
or independent of X (i.e., σ_y)
or both (i.e., σ)

Estimating Parameters & Prediction

MLE estimates

$$\hat{\mu}_{ik} = \frac{1}{\sum_{n} \mathbb{I}(y_n = k)} \sum_{\substack{n \\ \text{pixel i in} \\ \text{training image n}}} x_{ni} \mathbb{I}(y_n = k)$$

$$\hat{\sigma}_{ik}^2 = \frac{1}{\sum_{n} \mathbb{I}(y_n = k)} \sum_{n} (x_{ni} - \hat{\mu}_{ik})^2 \mathbb{I}(y_n = k)$$

Prediction:

$$h(\mathbf{x}) = \operatorname*{argmax}_{y} P(y) \prod_{i} P(x_i | y)$$

What you need to know about NB classifier

- What's the assumption
- Why we use it
- How do we learn it
- Why is Bayesian estimation (MAP) important

Linear regression and linear classification

What's the decision boundary of NB?

♦ Is it linear or non-linear?

There are several distributions that lead to a linear decision boundary, e.g., GNB with equal variance

$$P(X_i|Y=y) = \mathcal{N}(\mu_{iy}, \sigma_i^2)$$

Decision boundary (??):

$$\log \frac{\prod_{i=1}^{d} P(X_i | Y = 0) P(Y = 0)}{\prod_{i=1}^{d} P(X_i | Y = 1) P(Y = 1)} = 0$$

$$\Rightarrow \quad \log \frac{1 - \pi}{\pi} + \sum_{i} \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2} + \sum_{i} \frac{\mu_{i0} - \mu_{i1}}{\sigma_i^2} x_i = 0$$

$$\Rightarrow \quad w_0 + \sum_{i} w_i x_i = 0$$

Gaussian Naive Bayes (GNB)

Decision boundary (the general multivariate Gaussian case):

$$P_{1} = P(Y = 0), \quad P_{2} = P(Y = 1)$$
$$p_{1}(X) = p(X|Y = 0) = \mathcal{N}(M_{1}, \Sigma_{1})$$
$$p_{2}(X) = p(X|Y = 1) = \mathcal{N}(M_{2}, \Sigma_{2})$$

The predictive distribution of GNB

Understanding the predictive distribution

$$p(y = 1 | \mathbf{x}, \mu, \Sigma, \pi) = \frac{p(y = 1, \mathbf{x} | \mu, \Sigma, \pi)}{p(\mathbf{x} | \mu, \Sigma, \pi)}$$

Under naive Bayes assumption:

$$p(y = 1 | \mathbf{x}, \mu, \Sigma, \pi) = \frac{1}{1 + \frac{p(y=0, \mathbf{x} | \mu, \Sigma, \pi)}{p(y=1, \mathbf{x} | \mu, \Sigma, \pi)}}$$
$$= \frac{1}{1 + \frac{(1-\pi)\prod_i \mathcal{N}(x_i | \mu_{i0}, \sigma_i^2)}{\pi \prod_i \mathcal{N}(x_i | \mu_{i1}, \sigma_i^2)}}$$
$$= \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x} - w_0)}$$

Note: For multi-class, the predictive distribution is softmax!

Generative vs. Discriminative Classifiers

- Generative classifiers (e.g., Naive Bayes)
 - Assume some functional form for P(X,Y) (or P(Y) and P(X | Y))
 - Estimate parameters of P(X,Y) directly from training data
 - Make prediction

$$\hat{y} = \operatorname*{argmax}_{y} P(\mathbf{x}, Y = y)$$

But, we note that

$$\hat{y} = \operatorname*{argmax}_{y} P(Y = y | \mathbf{x})$$

- Why not learn P(Y | X) directly? Or, why not learn the decision boundary directly?
- Discriminative classifiers (e.g., Logistic regression)
 - Assume some functional form for P(Y | X)
 - Estimate parameters of P(Y | X) directly from training data

Logistic Regression

Recall the predictive distribution of GNB!

♦ Assume the following functional form for P(Y | X)

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^\top \mathbf{x}))}$$

• Logistic function (or Sigmoid) applied to a linear function of the data (for $\alpha = 1$):

use a large α can be good for some neural networks

Logistic Regression

What's the decision boundary of logistic regression? (linear or nonlinear?)

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^\top \mathbf{x}))}$$

$$\log \frac{P(Y=1|\mathbf{x})}{P(y=0|\mathbf{x})} = 0$$

$$\mathbf{w}^{\top}\mathbf{x} + w_0 = 0$$

 $\mathbf{w}^{\top}\mathbf{x} + w_0 = 0$

Logistic regression is a linear classifier!

Representation

Logistic regression

$$P(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^\top \mathbf{x}))}$$

♦ For notation simplicity, we use the augmented vector:

input features :
$$\begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix}$$
 model weights : $\begin{pmatrix} w_0 \\ \mathbf{w} \end{pmatrix}$

• Then, we have

$$P(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})}$$

Multiclass Logistic Regression

♦ For more than 2 classes, where $y \in \{1, ..., K\}$, logistic regression classifier is defined as

$$\forall k < K : P(Y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^\top \mathbf{x})}$$
$$P(Y = K | \mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^\top \mathbf{x})}$$

□ Well normalized distribution! No weights for class K!

♦ Is the decision boundary still linear?

Training Logistic Regression

We consider the binary classification

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x})}$$

• Training data $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$

Can we do large-margin learning?
Maximum Conditional Likelihood Estimate

We learn the parameters by solving

$$\hat{\mathbf{w}} = \operatorname*{argmax}_{\mathbf{w}} \prod_{i=1}^{N} P(y_i | \mathbf{x}_i, \mathbf{w})$$

Discriminative philosophy – don't waste effort on learning P(X), focus on P(Y | X) – that's all that matters for classification!

Maximum Conditional Likelihood Estimate

$$\hat{\mathbf{w}} = \operatorname*{argmax}_{\mathbf{w}} \prod_{i=1}^{N} P(y_i | \mathbf{x}_i, \mathbf{w})$$
$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x})}$$

• We have:

$$\mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{N} P(y_i | \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i} \left[y_i \mathbf{w}^\top \mathbf{x}_i - \log(1 + \exp(\mathbf{w}^\top \mathbf{x}_i)) \right]$$

Maximum Conditional Likelihood Estimate

 $\hat{\mathbf{w}} = \operatorname*{argmax}_{\mathbf{w}} \mathcal{L}(\mathbf{w})$ $_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \sum_{i} \left[y_{i} \mathbf{w}^{\top} \mathbf{x}_{i} - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_{i})) \right]$

♦ Bad news: no closed-form solution!
♦ Good news: L(w) is a concave function of w!
■ Is the original logistic function concave?

Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization.

Optimizing concave/convex function

- Conditional likelihood for logistic regression is concave
- Maximum of a concave function = minimum of a convex function

Gradient ascent (concave) / Gradient descent (convex)

Gradient Ascent for Logistic Regression

Property of sigmoid function

 $\Rightarrow \nabla_{\nu}\psi = \psi(1-\psi)$

Gradient ascent algorithm iteratively does:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \sum_{i=1}^N \mathbf{x}_i \left(y_i - \mu_i^t \right)$$

• where $\mu_i^t = P(y = 1 | \mathbf{x}_i, \mathbf{w}_t)$ is the prediction made by the current model

Until the change (of objective or gradient) falls below some threshold

Issues

- Gradient descent is the simplest optimization methods, faster convergence can be obtained by using
 - E.g., Newton method, conjugate gradient ascent, IRLS (iterative reweighted least squares)
- The vanilla logistic regression often over-fits; using a regularization can help a lot!

 $\$ Large $\eta =>$ fast convergence but larger residual error; Also possible oscillations

♦ Small η => slow convergence but small residual error

The Newton's Method

AKA: Newton-Raphson method

A method that finds the root of: f(x) = 0

$$x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}$$

The Newton's Method

To maximize the conditional likelihood

$$\mathcal{L}(\mathbf{w}) = \sum_{i} \left[y_i \mathbf{w}^\top \mathbf{x}_i - \log(1 + \exp(\mathbf{w}^\top \mathbf{x}_i)) \right]$$

• We need to find \mathbf{w}^* such that

$$\nabla \mathcal{L}(\mathbf{w}^*) = 0$$

♦ So we can perform the following iteration:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

• where *H* is known as the Hessian matrix:

$$H = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

Newton's Method for LR

The update equation

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

• where the gradient is:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t} = \sum_i (y_i - \mu_i) \mathbf{x}_i = X(\mathbf{y} - \boldsymbol{\mu})$$
$$\mu_i = \psi(\mathbf{w}_t^\top \mathbf{x}_i)$$

• The Hessian matrix is:

$$H = \nabla_{\mathbf{w}}^2 \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t} = \sum_i \mu_i (1 - \mu_i) \mathbf{x}_i \mathbf{x}_i^\top = XRX^\top$$

where $R_{ii} = \mu_i (1 - \mu_i)$

Iterative reweighted least squares (IRLS)

♦ In least square estimate of linear regression, we have

$$\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y}$$

Now, for logistic regression

$$\mathbf{w}_{t+1} = \mathbf{w}_t + H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)$$

= $\mathbf{w}_t - (XRX^{\top})^{-1} X(\boldsymbol{\mu} - \mathbf{y})$
= $(XRX^{\top})^{-1} \{XRX^{\top}\mathbf{w}_t - X(\boldsymbol{\mu} - \mathbf{y})\}$
= $(XRX^{\top})^{-1} XR\mathbf{z}$

where
$$\mathbf{z} = X^{\top} \mathbf{w}_t - R^{-1} (\boldsymbol{\mu} - \mathbf{y})$$

Convergence curves

Legend: X-axis: Iteration #;Y-axis: classification error
In each figure, red for IRLS and blue for gradient descent

LR: Practical Issues

- ◆ IRLS takes $O(N + d^3)$ per iteration, where N is # training points and d is feature dimension, but converges in fewer iterations
- Quasi-Newton methods, that approximate the Hessian, work faster
- \blacklozenge Conjugate gradient takes $O(Nd)\,$ per iteration, and usually works best in practice
- Stochastic gradient descent can also be used if N is large c.f. perceptron rule

Gaussian NB vs. Logistic Regression

- Representation equivalence
 - But only in some special case! (GNB with class independent variances)
- What's the differences?
 - LR makes no assumption about P(X | Y) in learning
 - They optimize different functions, obtain different solutions

Generative vs. Discriminative

Given infinite data (asymptotically)

 (1) If conditional independence assumption holds, discriminative and generative NB perform similar

$\epsilon_{\mathrm{Dis},\infty} \sim \epsilon_{\mathrm{Gen},\infty}$

 (2) If conditional independence assumption does NOT hold, discriminative outperform generative NB

 $\epsilon_{\mathrm{Dis},\infty} < \epsilon_{\mathrm{Gen},\infty}$

[Ng & Jordan, NIPS 2001]

Generative vs. Discriminative

♦ Given finite data (*N* data points, d features)

$$\epsilon_{\mathrm{Dis},N} \leq \epsilon_{\mathrm{Dis},\infty} + O\left(\sqrt{\frac{d}{N}}\right)$$

 $\epsilon_{\mathrm{Gen},N} \leq \epsilon_{\mathrm{Gen},\infty} + O\left(\sqrt{\frac{\log d}{N}}\right)$

• Naive Bayes (generative) requires $N = O(\log d)$ to converge to its asymptotic error, whereas logistic regression (discriminative) requires N = O(d).

Why?

 "Independent class conditional densities" – parameter estimates are not coupled, each parameter is learnt independently, not jointly, from training data

Experimental Comparison

 UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

What you need to know

- LR is a linear classifier
 - Decision boundary is a hyperplane
- ◆ LR is learnt by maximizing conditional likelihood
 - No closed-form solution
 - Concave! Global optimum by gradient ascent methods
- GNB with class-independent variances representationally equivalent to LR
 - Solutions differ because of objective (loss) functions
- ♦ In general, NB and LR make different assumptions
 - NB: features independent given class, assumption on P(X | Y)
 - LR: functional form of P(Y | X), no assumption on P(X | Y)
- Convergence rates:
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit

Exponential family

 \diamond For a numeric random variable $oldsymbol{X}$

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x}) \exp\left(\boldsymbol{\eta}^{\top} T(\mathbf{x}) - A(\boldsymbol{\eta})\right)$$
$$= \frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp\left(\boldsymbol{\eta}^{\top} T(\mathbf{x})\right)$$

is an **exponential family distribution** with natural (canonical) parameter η

• Function T(x) is a sufficient statistic.

• Function $A(\eta) = \log Z(\eta)$ is the log normalizer.

Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Recall Linear Regression

Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^\top \mathbf{x}_i + \epsilon_i$$

where **\mathcal{E}** is an error term of unmodeled effects or

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \boldsymbol{\theta}^\top \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Recall: Logistic Regression (sigmoid classifier)

The condition distribution: a Bernoulli

$$p(y|\mathbf{x}) = \mu(\mathbf{x})^y (1 - \mu(\mathbf{x}))^{1-y}$$

where μ is a logistic function

$$\mu(\mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\top}\mathbf{x}}}$$

We can used the brute-force gradient method as in LR

• But we can also apply generic laws by observing the p(y|x) is an exponential family function, more specifically, a generalized linear model!

Example: Multivariate Gaussian Distribution

 \diamond For a continuous vector random variable $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

$$= \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2} \operatorname{tr}(\boldsymbol{\Sigma}^{-1} \mathbf{x} \mathbf{x}^{\top}) + \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \log|\boldsymbol{\Sigma}|\right)$$
Moment parameter

Exponential family representation

Natural parameter

$$\boldsymbol{\eta} = \left[\Sigma^{-1} \boldsymbol{\mu}; -\frac{1}{2} \operatorname{vec}(\Sigma^{-1}) \right] = \left[\boldsymbol{\eta}_1; \operatorname{vec}(\boldsymbol{\eta}_2) \right], \ \boldsymbol{\eta}_1 = \Sigma^{-1} \boldsymbol{\mu} \text{ and } \boldsymbol{\eta}_2 = -\frac{1}{2} \Sigma^{-1} \boldsymbol{\mu}$$
$$T(\mathbf{x}) = \left[\mathbf{x}; \operatorname{vec}(\mathbf{x} \mathbf{x}^\top) \right]$$
$$A(\boldsymbol{\eta}) = \frac{1}{2} \boldsymbol{\mu}^\top \Sigma^{-1} \boldsymbol{\mu} + \log |\Sigma| = -\frac{1}{2} \operatorname{tr}(\boldsymbol{\eta}_2 \boldsymbol{\eta}_1 \boldsymbol{\eta}_1^\top) - \frac{1}{2} \log(-2|\boldsymbol{\eta}_2|)$$
$$h(\mathbf{x}) = (2\pi)^{-d/2}$$

• Note: a *d*-dimensional Gaussian is a $(d + d^2)$ -parameter distribution with a $(d + d^2)$ -element vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and have lower degree of freedom)

Example: Multinomial distribution

• For a binary vector random variable $\mathbf{x} \sim \text{multi}(\mathbf{x}|\pi)$:

$$p(\mathbf{x}|\pi) = \prod_{i=1}^{d} \pi_{i}^{x_{i}} = \exp\left(\sum_{i} x_{i} \ln \pi_{i}\right)$$
$$= \exp\left(\sum_{i=1}^{d-1} x_{i} \ln \pi_{i} + \left(1 - \sum_{i=1}^{d-1} x_{i}\right) \ln\left(1 - \sum_{i=1}^{d-1} \pi_{i}\right)\right)$$
$$= \exp\left(\sum_{i=1}^{d-1} x_{i} \ln \frac{\pi_{i}}{1 - \sum_{i=1}^{d-1} \pi_{i}} + \ln\left(1 - \sum_{i=1}^{d-1} \pi_{i}\right)\right)$$

Exponential family representation

$$\boldsymbol{\eta} = \left[\ln(\pi_i/\pi_d); 0 \right]$$
$$T(\mathbf{x}) = \mathbf{x}$$
$$A(\boldsymbol{\eta}) = -\ln\left(1 - \sum_{i=1}^{d-1} \pi_i\right) = \ln\left(\sum_{i=1}^d e^{\boldsymbol{\eta}_i}\right)$$
$$h(\mathbf{x}) = 1$$

Why exponential family?

Moment generating property (proof?)

$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \nabla_{\boldsymbol{\eta}} \log Z(\boldsymbol{\eta}) = \dots = \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\eta})}[T(\mathbf{x})]$$

$$\nabla_{\boldsymbol{\eta}}^2 A(\boldsymbol{\eta}) = \cdots = \operatorname{Var}[T(\mathbf{x})]$$

Moment estimation

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer *A*(η).
- The q^{th} derivative gives the q^{th} centered moment.

 $\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \text{mean}$

 $\nabla^2_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) =$ variance

Moment vs canonical parameters

• The moment parameter μ can be derived from the natural (canonical) parameter

$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\eta})}[T(\mathbf{x})] \triangleq \boldsymbol{\mu}$$

• $A(\eta)$ is convex since

$$\nabla_{\boldsymbol{\eta}}^2 A(\boldsymbol{\eta}) = \operatorname{Var}[T(\mathbf{x})] > 0$$

Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1):

$$\boldsymbol{\eta} riangleq \psi(\boldsymbol{\mu})$$

• A distribution in the exponential family can be parameterized not only by η – the canonical parameterization, but also by μ – the moment parameterization.

Sufficiency

- For $p(x \mid \theta)$, T(x) is *sufficient* for θ if there is no information in X regarding θ beyond that in T(x).
 - We can throw away **X** for the purpose of inference w.r.t. θ .

IID Sampling for Exponential Family

For exponential family distribution, we can obtain the sufficient statistics by inspection once represented in the standard form

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\top} T(\mathbf{x}) - A(\boldsymbol{\eta}))$$

Sufficient statistics:

$$T(\mathbf{x})$$

For IID sampling, the joint distribution is also an exponential family

$$p(D|\boldsymbol{\eta}) = \prod_{i} h(\mathbf{x}_{i}) \exp\left(\boldsymbol{\eta}^{\top} T(\mathbf{x}_{i}) - A(\boldsymbol{\eta})\right)$$
$$= \left(\prod_{i} h(\mathbf{x}_{i})\right) \exp\left(\boldsymbol{\eta}^{\top} \sum_{i} T(\mathbf{x}_{i}) - NA(\boldsymbol{\eta})\right)$$

• Sufficient statistics: $\sum_{i} T(\mathbf{x}_{i})$

MLE for Exponential Family

For *iid* data, the log-likelihood is

$$\mathcal{L}(\boldsymbol{\eta}; D) = \sum_{n} \log h(\mathbf{x}_{n}) + \left(\boldsymbol{\eta}^{\top} \sum_{n} T(\mathbf{x}_{n})\right) - NA(\boldsymbol{\eta})$$

Take derivatives and set to zero:

$$\nabla_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\eta}; D) = \sum_{n} T(\mathbf{x}_{n}) - N \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = 0$$
$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n} T(\mathbf{x}_{n})$$
$$\hat{\boldsymbol{\mu}}_{MLE} = \frac{1}{N} \sum_{n} T(\mathbf{x}_{n}) \quad \text{Only involve sufficient stiatistics!}$$

This amounts to moment matching.

We can infer the canonical parameters using $\hat{\boldsymbol{\eta}}_{MLE} = \psi(\hat{\boldsymbol{\mu}}_{MLE})$

Examples

Multinomial:

$$\boldsymbol{\eta} = [\ln(\pi_i/\pi_d); 0]$$

$$T(\mathbf{x}) = \mathbf{x}$$

$$A(\boldsymbol{\eta}) = -\ln\left(1 - \sum_{i=1}^{d-1} \pi_i\right) \qquad \Rightarrow \hat{\boldsymbol{\mu}}_{MLE} = \frac{1}{N} \sum_n \mathbf{x}_n$$

$$h(\mathbf{x}) = 1$$

♦ Poisson: $\eta = \log \lambda$ T(x) = x $A(\eta) = \lambda = e^{\eta}$ $h(x) = \frac{1}{x!}$

$$\Rightarrow \hat{\mu}_{MLE} = \frac{1}{N} \sum_{n} x_n$$

Generalized Linear Models (GLIMs)

The graphical model

- Linear regression
- Discriminative linear classification
- Commonality:

model
$$\mathbb{E}_p[y] = \mu = f(\boldsymbol{\theta}^\top \mathbf{x})$$

- What is p()? the cond. dist. of Y.
- What is f()? the response function.

♦ GLIM

- The observed input \boldsymbol{X} is assumed to enter into the model via a linear combination of its elements $\boldsymbol{\xi} = \boldsymbol{\theta}^T \boldsymbol{X}$
- The conditional mean μ is represented as a function $f(\xi)$ of ξ , where f is known as the response function
- The observed output \mathbf{y} is assumed to be characterized by an exponential family distribution with conditional mean μ .

- Canonical response function:
 - In this case $\theta^{\mathsf{T}} \mathbf{X}$ directly corresponds to canonical parameter η .

 $\boldsymbol{f}=\boldsymbol{\psi}^{-1}(\cdot)$

MLE for GLIMs

Log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; D) = \sum_{n} \log h(y_n) + \sum_{n} (\eta_n y_n - A(\eta_n))$$

where $\eta_n = \psi(\mu_n), \ \mu_n = f(\xi_n) \text{ and } \xi_n = \boldsymbol{\theta}^\top \mathbf{x}_n$

Derivative of Log-likelihood

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \sum_{n} \left(y_n \nabla_{\boldsymbol{\theta}} \eta_n - \frac{dA(\eta_n)}{d\eta_n} \nabla_{\boldsymbol{\theta}} \eta_n \right)$$

$$=\sum_{n}(y_{n}-\mu_{n})\nabla_{\boldsymbol{\theta}}\eta_{n}$$

This is a fixed point function because μ is a function of θ

MLE for GLIMs with canonical response

Log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; D) = \sum_{n} \log h(y_n) + \sum_{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}_n y_n - A(\eta_n) \right)$$

Oerivative of Log-likelihood

$$\mathcal{T}_{\boldsymbol{\theta}} \mathcal{L} = \sum_{n} \left(\mathbf{x}_{n} y_{n} - \frac{dA(\eta_{n})}{d\eta_{n}} \nabla_{\boldsymbol{\theta}} \eta_{n} \right)$$

$$= \sum_{n} (y_{n} - \mu_{n}) \mathbf{x}_{n}$$
This is a

This is a fixed point function because μ is a function of θ

Online learning for canonical GLIMs

 $= X(\mathbf{y} - \boldsymbol{\mu})$

• Stochastic gradient ascent = least mean squares (LMS) algorithm: $\mathbf{Q} = \mathbf{Q} + o(u - u^t)\mathbf{v}$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \rho(y_n - \mu_n^t) \mathbf{x}_n$$

where $\mu_n^t = f(\boldsymbol{\theta}_t^\top \mathbf{x}_n)$ and ρ is a step size

MLE for GLIMs with canonical response

Log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; D) = \sum_{n} \log h(y_n) + \sum_{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}_n y_n - A(\eta_n) \right)$$

$$\text{ Derivative of Log-likelihood}$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \sum_{n} \left(\mathbf{x}_n y_n - \frac{dA(\eta_n)}{d\eta_n} \nabla_{\boldsymbol{\theta}} \eta_n \right)$$

$$= \sum_{n} (y_n - \mu_n) \mathbf{x}_n$$
This is a fixed point funct

 $= X(\mathbf{y} - \boldsymbol{\mu})$

This is a fixed point function because μ is a function of θ

Batch learning applies

 E.g., the Newton's method leads to an Iteratively Reweighted Least Square (IRLS) algorithm

What you need to know

- Exponential family distribution
- Moment estimation
- Generalized linear models
- Parameter estimation of GLIMs